Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.880
Filtrar
1.
Acta Neuropathol Commun ; 12(1): 69, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664831

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that primarily affects motor neurons, leading to progressive muscle weakness and loss of voluntary muscle control. While the exact cause of ALS is not fully understood, emerging research suggests that dysfunction of the nuclear envelope (NE) may contribute to disease pathogenesis and progression. The NE plays a role in ALS through several mechanisms, including nuclear pore defects, nucleocytoplasmic transport impairment, accumulation of mislocalized proteins, and nuclear morphology abnormalities. The LINC complex is the second biggest multi-protein complex in the NE and consists of the SUN1/2 proteins spanning the inner nuclear membrane and Nesprin proteins embedded in the outer membrane. The LINC complex, by interacting with both the nuclear lamina and the cytoskeleton, transmits mechanical forces to the nucleus regulating its morphology and functional homeostasis. In this study we show extensive alterations to the LINC complex in motor and cortical iPSC-derived neurons and spinal cord organoids carrying the ALS causative mutation in the C9ORF72 gene (C9). Importantly, we show that such alterations are present in vivo in a cohort of sporadic ALS and C9-ALS postmortem spinal cord and motor cortex specimens. We also found that LINC complex disruption strongly correlated with nuclear morphological alterations occurring in ALS neurons, independently of TDP43 mislocalization. Altogether, our data establish morphological and functional alterations to the LINC complex as important events in ALS pathogenic cascade, making this pathway a possible target for both biomarker and therapy development.


Assuntos
Esclerose Amiotrófica Lateral , Proteína C9orf72 , Demência Frontotemporal , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/patologia , Esclerose Amiotrófica Lateral/metabolismo , Humanos , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Demência Frontotemporal/metabolismo , Masculino , Neurônios Motores/patologia , Neurônios Motores/metabolismo , Medula Espinal/patologia , Medula Espinal/metabolismo , Membrana Nuclear/metabolismo , Membrana Nuclear/patologia , Feminino , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Pessoa de Meia-Idade , Idoso , Córtex Motor/patologia , Córtex Motor/metabolismo
2.
Acta Neuropathol ; 147(1): 73, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641715

RESUMO

The most prominent genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) is a repeat expansion in the gene C9orf72. Importantly, the transcriptomic consequences of the C9orf72 repeat expansion remain largely unclear. Here, we used short-read RNA sequencing (RNAseq) to profile the cerebellar transcriptome, detecting alterations in patients with a C9orf72 repeat expansion. We focused on the cerebellum, since key C9orf72-related pathologies are abundant in this neuroanatomical region, yet TDP-43 pathology and neuronal loss are minimal. Consistent with previous work, we showed a reduction in the expression of the C9orf72 gene and an elevation in homeobox genes, when comparing patients with the expansion to both patients without the C9orf72 repeat expansion and control subjects. Interestingly, we identified more than 1000 alternative splicing events, including 4 in genes previously associated with ALS and/or FTLD. We also found an increase of cryptic splicing in C9orf72 patients compared to patients without the expansion and controls. Furthermore, we demonstrated that the expression level of select RNA-binding proteins is associated with cryptic splice junction inclusion. Overall, this study explores the presence of widespread transcriptomic changes in the cerebellum, a region not confounded by severe neurodegeneration, in post-mortem tissue from C9orf72 patients.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Humanos , Esclerose Amiotrófica Lateral/patologia , Transcriptoma , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Expansão das Repetições de DNA/genética , Demência Frontotemporal/patologia , Cerebelo/patologia , Degeneração Lobar Frontotemporal/patologia , Perfilação da Expressão Gênica
3.
PLoS One ; 19(4): e0298080, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635657

RESUMO

Inclusions containing TAR DNA binding protein 43 (TDP-43) are a pathological hallmark of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). One of the disease-specific features of TDP-43 inclusions is the aberrant phosphorylation of TDP-43 at serines 409/410 (pS409/410). Here, we developed rabbit monoclonal antibodies (mAbs) that specifically detect pS409/410-TDP-43 in multiple model systems and FTD/ALS patient samples. Specifically, we identified three mAbs (26H10, 2E9 and 23A1) from spleen B cell clones that exhibit high specificity and sensitivity to pS409/410-TDP-43 peptides in an ELISA assay. Biochemical analyses revealed that pS409/410 of recombinant TDP-43 and of exogenous 25 kDa TDP-43 C-terminal fragments in cultured HEK293T cells are detected by all three mAbs. Moreover, the mAbs detect pS409/410-positive TDP-43 inclusions in the brains of FTD/ALS patients and mouse models of TDP-43 proteinopathy by immunohistochemistry. Our findings indicate that these mAbs are a valuable resource for investigating TDP-43 pathology both in vitro and in vivo.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Proteinopatias TDP-43 , Camundongos , Animais , Humanos , Esclerose Amiotrófica Lateral/genética , Demência Frontotemporal/patologia , Anticorpos Monoclonais , Células HEK293 , Proteínas de Ligação a DNA/genética
4.
Neuron ; 112(8): 1197-1199, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38636451

RESUMO

In this issue of Neuron, Ke et al.1 report a novel non-canonical interaction between 14-3-3θ and TDP-43 that impacts loss-of-function and gain-of-toxic pathology in TDP-43 proteinopathies. The authors further provide proof of principle for a 14-3-3θ-targeted gene therapy to reduce TDP-43-induced deficits in transgenic TDP-43 mutant mice.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Proteinopatias TDP-43 , Animais , Camundongos , Esclerose Amiotrófica Lateral/patologia , Proteínas de Ligação a DNA/genética , Demência Frontotemporal/genética , Camundongos Transgênicos , Neurônios/patologia , Proteinopatias TDP-43/genética
5.
Sci Rep ; 14(1): 9064, 2024 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643236

RESUMO

Frontotemporal dementia (FTD) is a debilitating neurodegenerative disorder with currently no disease-modifying treatment options available. Mutations in GRN are one of the most common genetic causes of FTD, near ubiquitously resulting in progranulin (PGRN) haploinsufficiency. Small molecules that can restore PGRN protein to healthy levels in individuals bearing a heterozygous GRN mutation may thus have therapeutic value. Here, we show that epigenetic modulation through bromodomain and extra-terminal domain (BET) inhibitors (BETi) potently enhance PGRN protein levels, both intracellularly and secreted forms, in human central nervous system (CNS)-relevant cell types, including in microglia-like cells. In terms of potential for disease modification, we show BETi treatment effectively restores PGRN levels in neural cells with a GRN mutation known to cause PGRN haploinsufficiency and FTD. We demonstrate that BETi can rapidly and durably enhance PGRN in neural progenitor cells (NPCs) in a manner dependent upon BET protein expression, suggesting a gain-of-function mechanism. We further describe a CNS-optimized BETi chemotype that potently engages endogenous BRD4 and enhances PGRN expression in neuronal cells. Our results reveal a new epigenetic target for treating PGRN-deficient forms of FTD and provide mechanistic insight to aid in translating this discovery into therapeutics.


Assuntos
Demência Frontotemporal , Humanos , Progranulinas/metabolismo , Demência Frontotemporal/tratamento farmacológico , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Mutação , Epigênese Genética , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular/metabolismo
6.
Proc Natl Acad Sci U S A ; 121(17): e2307814121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621131

RESUMO

Efforts to genetically reverse C9orf72 pathology have been hampered by our incomplete understanding of the regulation of this complex locus. We generated five different genomic excisions at the C9orf72 locus in a patient-derived induced pluripotent stem cell (iPSC) line and a non-diseased wild-type (WT) line (11 total isogenic lines), and examined gene expression and pathological hallmarks of C9 frontotemporal dementia/amyotrophic lateral sclerosis in motor neurons differentiated from these lines. Comparing the excisions in these isogenic series removed the confounding effects of different genomic backgrounds and allowed us to probe the effects of specific genomic changes. A coding single nucleotide polymorphism in the patient cell line allowed us to distinguish transcripts from the normal vs. mutant allele. Using digital droplet PCR (ddPCR), we determined that transcription from the mutant allele is upregulated at least 10-fold, and that sense transcription is independently regulated from each allele. Surprisingly, excision of the WT allele increased pathologic dipeptide repeat poly-GP expression from the mutant allele. Importantly, a single allele was sufficient to supply a normal amount of protein, suggesting that the C9orf72 gene is haplo-sufficient in induced motor neurons. Excision of the mutant repeat expansion reverted all pathology (RNA abnormalities, dipeptide repeat production, and TDP-43 pathology) and improved electrophysiological function, whereas silencing sense expression did not eliminate all dipeptide repeat proteins, presumably because of the antisense expression. These data increase our understanding of C9orf72 gene regulation and inform gene therapy approaches, including antisense oligonucleotides (ASOs) and CRISPR gene editing.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Humanos , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Alelos , Esclerose Amiotrófica Lateral/metabolismo , Demência Frontotemporal/metabolismo , Neurônios Motores/metabolismo , Mutação , Expansão das Repetições de DNA/genética , Dipeptídeos/metabolismo
7.
Acta Neuropathol ; 147(1): 66, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568475

RESUMO

Reactive astrogliosis accompanies the two neuropathological hallmarks of Alzheimer's disease (AD)-Aß plaques and neurofibrillary tangles-and parallels neurodegeneration in AD and AD-related dementias (ADRD). Thus, there is growing interest in developing imaging and fluid biomarkers of reactive astrogliosis for AD/ADRD diagnosis and prognostication. Monoamine oxidase-B (MAO-B) is emerging as a target for PET imaging radiotracers of reactive astrogliosis. However, a thorough characterization of MAO-B expression in postmortem control and AD/ADRD brains is lacking. We sought to: (1) identify the primary cell type(s) expressing MAO-B in control and AD brains; (2) quantify MAO-B immunoreactivity in multiple brain regions of control and AD donors as a proxy for PET radiotracer uptake; (3) correlate MAO-B level with local AD neuropathological changes, reactive glia, and cortical atrophy; (4) determine whether the MAOB rs1799836 SNP genotype impacts MAO-B expression level; (5) compare MAO-B immunoreactivity across AD/ADRD, including Lewy body diseases (LBD) and frontotemporal lobar degenerations with tau (FTLD-Tau) and TDP-43 (FTLD-TDP). We found that MAO-B is mainly expressed by subpial and perivascular cortical astrocytes as well as by fibrous white matter astrocytes in control brains, whereas in AD brains, MAO-B is significantly upregulated by both cortical reactive astrocytes and white matter astrocytes across temporal, frontal, and occipital lobes. By contrast, MAO-B expression level was unchanged and lowest in cerebellum. Cortical MAO-B expression was independently associated with cortical atrophy and local measures of reactive astrocytes and microglia, and significantly increased in reactive astrocytes surrounding Thioflavin-S+ dense-core Aß plaques. MAO-B expression was not affected by the MAOB rs1799836 SNP genotype. MAO-B expression was also significantly increased in the frontal cortex and white matter of donors with corticobasal degeneration, Pick's disease, and FTLD-TDP, but not in LBD or progressive supranuclear palsy. These findings support ongoing efforts to develop MAO-B-based PET radiotracers to image reactive astrogliosis in AD/ADRD.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Doença por Corpos de Lewy , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Gliose , Biomarcadores , Atrofia
8.
Alzheimers Res Ther ; 16(1): 79, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605416

RESUMO

BACKGROUND: The hypothesis of decreased neural inhibition in dementia has been sparsely studied in functional magnetic resonance imaging (fMRI) data across patients with different dementia subtypes, and the role of social and demographic heterogeneities on this hypothesis remains to be addressed. METHODS: We inferred regional inhibition by fitting a biophysical whole-brain model (dynamic mean field model with realistic inter-areal connectivity) to fMRI data from 414 participants, including patients with Alzheimer's disease, behavioral variant frontotemporal dementia, and controls. We then investigated the effect of disease condition, and demographic and clinical variables on the local inhibitory feedback, a variable related to the maintenance of balanced neural excitation/inhibition. RESULTS: Decreased local inhibitory feedback was inferred from the biophysical modeling results in dementia patients, specific to brain areas presenting neurodegeneration. This loss of local inhibition correlated positively with years with disease, and showed differences regarding the gender and geographical origin of the patients. The model correctly reproduced known disease-related changes in functional connectivity. CONCLUSIONS: Results suggest a critical link between abnormal neural and circuit-level excitability levels, the loss of grey matter observed in dementia, and the reorganization of functional connectivity, while highlighting the sensitivity of the underlying biophysical mechanism to demographic and clinical heterogeneities in the patient population.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Humanos , Encéfalo/patologia , Imageamento por Ressonância Magnética , Substância Cinzenta/patologia , Demência Frontotemporal/patologia , Doença de Alzheimer/patologia , Inibição Neural
9.
Transl Vis Sci Technol ; 13(4): 17, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38591943

RESUMO

Purpose: To characterize the fundus tessellated density (FTD) in highly myopic glaucoma (HMG) and high myopia (HM) for discovering early signs and diagnostic markers. Methods: This retrospective cross-sectional study included hospital in-patients with HM (133 eyes) and HMG (73 eyes) with an axial length ≥26 mm at Zhongshan Ophthalmic Center. Using deep learning, FTD was quantified as the average exposed choroid area per unit area on fundus photographs in the global, macular, and disc regions. FTD-associated factors were assessed using partial correlation. Diagnostic efficacy was analyzed using the area under the curve (AUC). Results: HMG patients had lower global (0.20 ± 0.12 versus 0.36 ± 0.09) and macular FTD (0.25 ± 0.14 vs. 0.40 ± 0.09) but larger disc FTD (0.24 ± 0.11 vs. 0.19 ± 0.07) than HM patients in the tessellated fundus (all P < 0.001). In the macular region, nasal FTD was lowest in the HM (0.26 ± 0.13) but highest in the HMG (0.32 ± 0.13) compared with the superior, inferior, and temporal subregions (all P < 0.05). A fundus with a macular region nasal/temporal (NT) FTD ratio > 0.96 (AUC = 0.909) was 15.7 times more indicative of HMG than HM. A higher macular region NT ratio with a lower horizontal parapapillary atrophy/disc ratio indicated a higher possibility of HMG than HM (AUC = 0.932). Conclusions: FTD differs in degree and distribution between HMG and HM. A higher macular NT alone or with a lower horizontal parapapillary atrophy/disc ratio may help differentiate HMG. Translational Relevance: Deep learning-based FTD measurement could potentially assist glaucoma diagnosis in HM.


Assuntos
Aprendizado Profundo , Demência Frontotemporal , Glaucoma , Miopia , Humanos , Estudos Transversais , Estudos Retrospectivos , Glaucoma/complicações , Glaucoma/diagnóstico , Miopia/complicações , Miopia/diagnóstico , Atrofia , Corioide
10.
Brain Nerve ; 76(4): 343-351, 2024 Apr.
Artigo em Japonês | MEDLINE | ID: mdl-38589279

RESUMO

A definite diagnosis of neurodegenerative diseases is required for neuropathological examination during an autopsy. Each neurodegenerative disease has specific vulnerable regions and affected systems (system degeneration), and is typified by an accumulation of abnormal protein with the formation of characteristic morphological aggregates in the nerve and glial cells, called proteinopathy. The most common neurodegenerative diseases are tauopathy, such as progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Pick's disease (PiD); α-synucleinopathy, including multiple system atrophy (MSA); and TAR DNA-binding protein of 43 kDa (TDP-43) proteinopathy, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). PSP and CBD show characteristic tau-positive astrocytic inclusions known as tufted astrocytes and astrocytic plaques, respectively. PiD shows tau-positive neuronal inclusions termed Pick bodies. MSA is characterized by α-synuclein-positive oligodendroglial inclusions, called glial cytoplasmic inclusions. ALS- and FTLD-TDP show TDP-43-positive neuronal inclusions, such as skein-like and round inclusions. Huntington's disease shows polyglutamine-positive neuronal inclusions, and Creutzfeldt-Jakob disease shows diffuse deposition of granular prions in the neuropil. The atypical proteins in these diseases have abnormal conformational properties. A comprehensive comparison of the clinical findings and neuropathological observations, including neuroanatomy and images acquired during life, is important to improve the sensitivity of clinical diagnosis.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Atrofia de Múltiplos Sistemas , Doença de Pick , Tauopatias , Humanos , Proteínas tau/metabolismo , Esclerose Amiotrófica Lateral/patologia , Tauopatias/metabolismo , Tauopatias/patologia , Doença de Pick/metabolismo , Doença de Pick/patologia , Proteínas de Ligação a DNA/metabolismo
11.
JAMA Netw Open ; 7(4): e244266, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558141

RESUMO

Importance: Frontotemporal lobar degeneration (FTLD) is relatively rare, behavioral and motor symptoms increase travel burden, and standard neuropsychological tests are not sensitive to early-stage disease. Remote smartphone-based cognitive assessments could mitigate these barriers to trial recruitment and success, but no such tools are validated for FTLD. Objective: To evaluate the reliability and validity of smartphone-based cognitive measures for remote FTLD evaluations. Design, Setting, and Participants: In this cohort study conducted from January 10, 2019, to July 31, 2023, controls and participants with FTLD performed smartphone application (app)-based executive functioning tasks and an associative memory task 3 times over 2 weeks. Observational research participants were enrolled through 18 centers of a North American FTLD research consortium (ALLFTD) and were asked to complete the tests remotely using their own smartphones. Of 1163 eligible individuals (enrolled in parent studies), 360 were enrolled in the present study; 364 refused and 439 were excluded. Participants were divided into discovery (n = 258) and validation (n = 102) cohorts. Among 329 participants with data available on disease stage, 195 were asymptomatic or had preclinical FTLD (59.3%), 66 had prodromal FTLD (20.1%), and 68 had symptomatic FTLD (20.7%) with a range of clinical syndromes. Exposure: Participants completed standard in-clinic measures and remotely administered ALLFTD mobile app (app) smartphone tests. Main Outcomes and Measures: Internal consistency, test-retest reliability, association of smartphone tests with criterion standard clinical measures, and diagnostic accuracy. Results: In the 360 participants (mean [SD] age, 54.0 [15.4] years; 209 [58.1%] women), smartphone tests showed moderate-to-excellent reliability (intraclass correlation coefficients, 0.77-0.95). Validity was supported by association of smartphones tests with disease severity (r range, 0.38-0.59), criterion-standard neuropsychological tests (r range, 0.40-0.66), and brain volume (standardized ß range, 0.34-0.50). Smartphone tests accurately differentiated individuals with dementia from controls (area under the curve [AUC], 0.93 [95% CI, 0.90-0.96]) and were more sensitive to early symptoms (AUC, 0.82 [95% CI, 0.76-0.88]) than the Montreal Cognitive Assessment (AUC, 0.68 [95% CI, 0.59-0.78]) (z of comparison, -2.49 [95% CI, -0.19 to -0.02]; P = .01). Reliability and validity findings were highly similar in the discovery and validation cohorts. Preclinical participants who carried pathogenic variants performed significantly worse than noncarrier family controls on 3 app tasks (eg, 2-back ß = -0.49 [95% CI, -0.72 to -0.25]; P < .001) but not a composite of traditional neuropsychological measures (ß = -0.14 [95% CI, -0.42 to 0.14]; P = .32). Conclusions and Relevance: The findings of this cohort study suggest that smartphones could offer a feasible, reliable, valid, and scalable solution for remote evaluations of FTLD and may improve early detection. Smartphone assessments should be considered as a complementary approach to traditional in-person trial designs. Future research should validate these results in diverse populations and evaluate the utility of these tests for longitudinal monitoring.


Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos de Coortes , Demência Frontotemporal/diagnóstico , Degeneração Lobar Frontotemporal/diagnóstico , Degeneração Lobar Frontotemporal/patologia , Degeneração Lobar Frontotemporal/psicologia , Testes Neuropsicológicos , Reprodutibilidade dos Testes , Smartphone , Ensaios Clínicos como Assunto
12.
Alzheimers Res Ther ; 16(1): 72, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581060

RESUMO

BACKGROUND: Vascular dysfunction was recently reported to be involved in the pathophysiological process of neurodegenerative diseases, but its role in sporadic behavioral variant frontotemporal dementia (bvFTD) remains unclear. The aim of this study was to systematically explore vascular dysfunction, including changes in white matter hyperintensities (WMHs) and peripheral vascular markers in bvFTD. METHODS: Thirty-two patients with bvFTD who with no vascular risk factors were enrolled in this cross-sectional study and assessed using positron emission tomography/magnetic resonance (PET/MRI) imaging, peripheral plasma vascular/inflammation markers, and neuropsychological examinations. Group differences were tested using Student's t-tests and Mann-Whitney U tests. A partial correlation analysis was implemented to explore the association between peripheral vascular markers, neuroimaging, and clinical measures. RESULTS: WMH was mainly distributed in anterior brain regions. All peripheral vascular factors including matrix metalloproteinases-1 (MMP-1), MMP-3, osteopontin, and pentraxin-3 were increased in the bvFTD group. WMH was associated with the peripheral vascular factor pentraxin-3. The plasma level of MMP-1 was negatively correlated with the gray matter metabolism of the frontal, temporal, insula, and basal ganglia brain regions. The WMHs in the frontal and limbic lobes were associated with plasma inflammation markers, disease severity, executive function, and behavior abnormality. Peripheral vascular markers were associated with the plasma inflammation markers. CONCLUSIONS: WMHs and abnormalities in peripheral vascular markers were found in patients with bvFTD. These were found to be associated with the disease-specific pattern of neurodegeneration, indicating that vascular dysfunction may be involved in the pathogenesis of bvFTD. This warrants further confirmation by postmortem autopsy. Targeting the vascular pathway might be a promising approach for potential therapy.


Assuntos
Demência Frontotemporal , Substância Branca , Humanos , Demência Frontotemporal/metabolismo , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Estudos Transversais , Metaloproteinase 1 da Matriz/metabolismo , Encéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Substância Cinzenta/patologia , Testes Neuropsicológicos , Biomarcadores/metabolismo , Inflamação/patologia
13.
Behav Brain Funct ; 20(1): 7, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575965

RESUMO

BACKGROUND: Alzheimer's disease (AD) and amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD) are debilitating neurodegenerative diseases for which there are currently no cures. Familial cases with known genetic causes make up less than 10% of these diseases, and little is known about the underlying mechanisms that contribute to sporadic disease. Accordingly, it is important to expand investigations into possible pathways that may contribute to disease pathophysiology. Glycerophosphodiester phosphodiesterase 2 (GDE2 or GDPD5) is a membrane-bound enzyme that acts at the cell surface to cleave the glycosylphosphatidylinositol (GPI)-anchor that tethers distinct proteins to the membrane. GDE2 abnormally accumulates in intracellular compartments in the brain of patients with AD, ALS, and ALS/FTD, indicative of GDE2 dysfunction. Mice lacking GDE2 (Gde2KO) show neurodegenerative changes such as neuronal loss, reduced synaptic proteins and synapse loss, and increased Aß deposition, raising the possibility that GDE2 disruption in disease might contribute to disease pathophysiology. However, the effect of GDE2 loss on behavioral function and learning/memory has not been characterized. RESULTS: Here, we show that GDE2 is expressed throughout the adult mouse brain in areas including the cortex, hippocampus, habenula, thalamus, and amygdala. Gde2KO and WT mice were tested in a set of behavioral tasks between 7 and 16 months of age. Compared to WT, Gde2KO mice display moderate hyperactivity that becomes more pronounced with age across a variety of behavioral tests assessing novelty-induced exploratory activity. Additionally, Gde2KO mice show reduced startle response, with females showing additional defects in prepulse inhibition. No changes in anxiety-associated behaviors were found, but Gde2KOs show reduced sociability. Notably, aged Gde2KO mice demonstrate impaired short/long-term spatial memory and cued fear memory/secondary contextual fear acquisition. CONCLUSIONS: Taken together, these observations suggest that loss of GDE2 leads to behavioral deficits, some of which are seen in neurodegenerative disease models, implying that loss of GDE2 may be an important contributor to phenotypes associated with neurodegeneration.


Assuntos
Doença de Alzheimer , Esclerose Amiotrófica Lateral , Demência Frontotemporal , Doenças Neurodegenerativas , Idoso , Animais , Feminino , Humanos , Camundongos , Doença de Alzheimer/genética , Esclerose Amiotrófica Lateral/genética , Demência Frontotemporal/genética , Memória , Transtornos da Memória/genética , Camundongos Transgênicos , Doenças Neurodegenerativas/genética
14.
CMAJ ; 196(13): E465-E466, 2024 Apr 07.
Artigo em Francês | MEDLINE | ID: mdl-38589029
15.
Cell Stem Cell ; 31(4): 519-536.e8, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579683

RESUMO

Traumatic brain injury (TBI) strongly correlates with neurodegenerative disease. However, it remains unclear which neurodegenerative mechanisms are intrinsic to the brain and which strategies most potently mitigate these processes. We developed a high-intensity ultrasound platform to inflict mechanical injury to induced pluripotent stem cell (iPSC)-derived cortical organoids. Mechanically injured organoids elicit classic hallmarks of TBI, including neuronal death, tau phosphorylation, and TDP-43 nuclear egress. We found that deep-layer neurons were particularly vulnerable to injury and that TDP-43 proteinopathy promotes cell death. Injured organoids derived from C9ORF72 amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD) patients displayed exacerbated TDP-43 dysfunction. Using genome-wide CRISPR interference screening, we identified a mechanosensory channel, KCNJ2, whose inhibition potently mitigated neurodegenerative processes in vitro and in vivo, including in C9ORF72 ALS/FTD organoids. Thus, targeting KCNJ2 may reduce acute neuronal death after brain injury, and we present a scalable, genetically flexible cerebral organoid model that may enable the identification of additional modifiers of mechanical stress.


Assuntos
Esclerose Amiotrófica Lateral , Lesões Encefálicas Traumáticas , Demência Frontotemporal , Doenças Neurodegenerativas , Canais de Potássio Corretores do Fluxo de Internalização , Humanos , Esclerose Amiotrófica Lateral/etiologia , Esclerose Amiotrófica Lateral/patologia , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/terapia , Proteína C9orf72/metabolismo , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/etiologia , Demência Frontotemporal/patologia , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/patologia , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo
16.
Zhonghua Yan Ke Za Zhi ; 60(3): 257-264, 2024 Mar 11.
Artigo em Chinês | MEDLINE | ID: mdl-38462374

RESUMO

Objective: To achieve automatic segmentation, quantification, and grading of different regions of leopard spots fundus (FT) using deep learning technology. The analysis includes exploring the correlation between novel quantitative indicators, leopard spot fundus grades, and various systemic and ocular parameters. Methods: This was a cross-sectional study. The data were sourced from the Beijing Eye Study, a population-based longitudinal study. In 2001, a group of individuals aged 40 and above were surveyed in five urban communities in Haidian District and three rural communities in Daxing District of Beijing. A follow-up was conducted in 2011. This study included individuals aged 50 and above who participated in the second 5-year follow-up in 2011, considering only the data from the right eye. Color fundus images centered on the macula of the right eye were input into the leopard spot segmentation model and macular detection network. Using the macular center as the origin, with inner circle diameters of 1 mm, 3 mm, and outer circle diameter of 6 mm, fine segmentation of the fundus was achieved. This allowed the calculation of the leopard spot density (FTD) and leopard spot grade for each region. Further analyses of the differences in ocular and systemic parameters among different regions' FTD and leopard spot grades were conducted. The participants were categorized into three refractive types based on equivalent spherical power (SE): myopia (SE<-0.25 D), emmetropia (-0.25 D≤SE≤0.25 D), and hyperopia (SE>0.25 D). Based on axial length, the participants were divided into groups with axial length<24 mm, 24-26 mm, and>26 mm for the analysis of different types of FTD. Statistical analyses were performed using one-way analysis of variance, Kruskal-Wallis test, Bonferroni test, and Spearman correlation analysis. Results: The study included 3 369 participants (3 369 eyes) with an average age of (63.9±10.6) years; among them, 1 886 were female (56.0%) and 1, 483 were male (64.0%). The overall FTD for all eyes was 0.060 (0.016, 0.163); inner circle FTD was 0.000 (0.000, 0.025); middle circle FTD was 0.030 (0.000, 0.130); outer circle FTD was 0.055 (0.009, 0.171). The results of the univariate analysis indicated that FTD in various regions was correlated with axial length (overall: r=0.38, P<0.001; inner circle: r=0.31, P<0.001; middle circle: r=0.36, P<0.001; outer circle: r=0.39, P<0.001), subfoveal choroidal thickness (SFCT) (overall: r=-0.69, P<0.001; inner circle: r=-0.57, P<0.001; middle circle: r=-0.68, P<0.001; outer circle: r=-0.72, P<0.001), age (overall: r=0.34, P<0.001; inner circle: r=0.30, P<0.001; middle circle: r=0.31, P<0.001; outer circle: r=0.35, P<0.001), gender (overall: r=-0.11, P<0.001; inner circle: r=-0.04, P<0.001; middle circle: r=-0.07, P<0.001; outer circle: r=-0.11, P<0.001), SE (overall: r=-0.20; P<0.001; inner circle: r=-0.19, P<0.001; middle circle: r=-0.20, P<0.001; outer circle: r=-0.20, P<0.001), uncorrected visual acuity (overall: r=-0.18, P<0.001; inner circle: r=-0.26, P<0.001; middle circle: r=-0.24, P<0.001; outer circle: r=-0.22, P<0.001), and body mass index (BMI) (overall: r=-0.11, P<0.001; inner circle: r=-0.13, P<0.001; middle circle: r=-0.14, P<0.001; outer circle: r=-0.13, P<0.001). Further multivariate analysis results indicated that different region FTD was correlated with axial length (overall: ß=0.020, P<0.001; inner circle: ß=-0.022, P<0.001; middle circle: ß=0.027, P<0.001; outer circle: ß=0.022, P<0.001), SFCT (overall: ß=-0.001, P<0.001; inner circle: ß=-0.001, P<0.001; middle circle: ß=-0.001, P<0.001; outer circle: ß=-0.001, P<0.001), and age (overall: ß=0.002, P<0.001; inner circle: ß=0.001, P<0.001; middle circle: ß=0.002, P<0.001; outer circle: ß=0.002, P<0.001). The distribution of overall (H=56.76, P<0.001), inner circle (H=72.22, P<0.001), middle circle (H=75.83, P<0.001), and outer circle (H=70.34, P<0.001) FTD differed significantly among different refractive types. The distribution of overall (H=373.15, P<0.001), inner circle (H=367.67, P<0.001), middle circle (H=389.14, P<0.001), and outer circle (H=386.89, P<0.001) FTD differed significantly among different axial length groups. Furthermore, comparing various levels of FTD with systemic and ocular parameters, significant differences were found in axial length (F=142.85, P<0.001) and SFCT (F=530.46, P<0.001). Conclusions: The use of deep learning technology enables automatic segmentation and quantification of different regions of theFT, as well as preliminary grading. Different region FTD is significantly correlated with axial length, SFCT, and age. Individuals with older age, myopia, and longer axial length tend to have higher FTD and more advanced FT grades.


Assuntos
Aprendizado Profundo , Demência Frontotemporal , Miopia , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Estudos Longitudinais , Estudos Transversais , Tomografia de Coerência Óptica/métodos , Miopia/diagnóstico , Fundo de Olho , Comprimento Axial do Olho
17.
Cogn Behav Neurol ; 37(1): 3-12, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38498721

RESUMO

We present a review of the definition, classification, and epidemiology of primary progressive aphasia (PPA); an update of the taxonomy of the clinical syndrome of PPA; and recent advances in the neuroanatomy, pathology, and genetics of PPA, as well as the search for biomarkers and treatment. PPA studies that have contributed to concepts of language organization and disease propagation in neurodegeneration are also reviewed. In addition, the issues of heterogeneity versus the relationships of the clinical phenotypes and their relationship to biological, pathological, and genetic advances are discussed, as is PPA's relationship to other conditions such as frontotemporal dementia, corticobasal degeneration, progressive supranuclear palsy, Pick disease, and amyotrophic lateral sclerosis. Arguments are presented in favor of considering these conditions as one entity versus many.


Assuntos
Afasia Primária Progressiva , Demência Frontotemporal , Paralisia Supranuclear Progressiva , Humanos , Demência Frontotemporal/diagnóstico , Demência Frontotemporal/genética , Paralisia Supranuclear Progressiva/genética , Paralisia Supranuclear Progressiva/patologia , Síndrome
18.
J Affect Disord ; 355: 167-174, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38548196

RESUMO

BACKGROUND: Major depressive disorder (MDD) and dementia psychiatric and neurological diseases that are clinically widespread, but whether there is a causal link between them is still unclear. In this study, bidirectional two-sample Mendelian randomization (MR) was used to investigate the potential causal relationship between MDD and dementia via a genome-wide association study (GWAS) database, containing samples from the European population. METHOD: We collected data on MDD and common clinical dementia subtypes from GWAS, including Alzheimer's disease (AD), frontotemporal dementia (FTD), dementia with Lewy bodies (DLB), Parkinson's disease with dementia (PDD), and vascular dementia (VaD). A series of bidirectional two-sample MR studies and correlation sensitivity analysis were carried out. RESULTS: In the study of the effect of MDD on dementia subtypes, no causal relationship was found between MDD and dementia subtypes other than VaD, inverse variance weighted (IVW) method: odds ratio (OR), 2.131; 95 % confidence interval (CI), 1.249-3.639, P = 0.006; MDD-AD: OR, 1.000; 95 % CI, 0.999-1.001, P = 0.537; MDD-FTD: OR, 1.476; 95 % CI, 0.471-4.627, P = 0.505; MDD-PDD: OR, 0.592; 95 % CI, 0.204-1.718, P = 0.335; MR-Egger method: MDD-DLB: OR, 0.582; 95 % CI, 0.021-15.962, P = 0.751. In reverse MR analyses, no dementia subtype was found to be a risk factor for MDD. LIMITATIONS: The results of this study may not be generalizable to non-European populations. CONCLUSION: MDD was identified as a potential risk factor for VaD, but no dementia subtype was found to be a risk factor for MDD. These results suggest a new avenue for the prevention of VaD.


Assuntos
Doença de Alzheimer , Transtorno Depressivo Maior , Demência Frontotemporal , Humanos , Transtorno Depressivo Maior/epidemiologia , Transtorno Depressivo Maior/genética , Demência Frontotemporal/epidemiologia , Demência Frontotemporal/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana
19.
Brain Behav Immun ; 118: 380-397, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38485064

RESUMO

Autoantibodies directed against the GluA3 subunit (anti-GluA3 hIgGs) of AMPA receptors have been identified in 20%-25% of patients with frontotemporal lobar degeneration (FTLD). Data from patients and in vitro/ex vivo pre-clinical studies indicate that anti-GluA3 hIgGs negatively affect glutamatergic neurotransmission. However, whether and how the chronic presence of anti-GluA3 hIgGs triggers synaptic dysfunctions and the appearance of FTLD-related neuropathological and behavioural signature has not been clarified yet. To address this question, we developed and characterized a pre-clinical mouse model of passive immunization with anti-GluA3 hIgGs purified from patients. In parallel, we clinically compared FTLD patients who were positive for anti-GluA3 hIgGs to negative ones. Clinical data showed that the presence of anti-GluA3 hIgGs defined a subgroup of patients with distinct clinical features. In the preclinical model, anti-GluA3 hIgGs administration led to accumulation of phospho-tau in the postsynaptic fraction and dendritic spine loss in the prefrontal cortex. Remarkably, the preclinical model exhibited behavioural disturbances that mostly reflected the deficits proper of patients positive for anti-GluA3 hIgGs. Of note, anti-GluA3 hIgGs-mediated alterations were rescued in the animal model by enhancing glutamatergic neurotransmission with a positive allosteric modulator of AMPA receptors. Overall, our study clarified the contribution of anti-GluA3 autoantibodies to central nervous system symptoms and pathology and identified a specific subgroup of FTLD patients. Our findings will be instrumental in the development of a therapeutic personalised medicine strategy for patients positive for anti-GluA3 hIgGs.


Assuntos
Autoanticorpos , Degeneração Lobar Frontotemporal , Animais , Humanos , Camundongos , Autoanticorpos/metabolismo , Demência Frontotemporal , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Receptores de AMPA , Transmissão Sináptica , Proteínas tau/metabolismo
20.
Acta Neuropathol ; 147(1): 58, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520489

RESUMO

Neurodegenerative pathologies such as Alzheimer disease neuropathologic change (ADNC), Lewy body disease (LBD), limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC), and cerebrovascular disease (CVD) frequently coexist, but little is known about the exact contribution of each pathology to cognitive decline and dementia in subjects with mixed pathologies. We explored the relative cognitive impact of concurrent common and rare neurodegenerative pathologies employing multivariate logistic regression analysis adjusted for age, gender, and level of education. We analyzed a cohort of 6,262 subjects from the National Alzheimer's Coordinating Center database, ranging from 0 to 6 comorbid neuropathologic findings per individual, where 95.7% of individuals had at least 1 neurodegenerative finding at autopsy and 75.5% had at least 2 neurodegenerative findings. We identified which neuropathologic entities correlate most frequently with one another and demonstrated that the total number of pathologies per individual was directly correlated with cognitive performance as assessed by Clinical Dementia Rating (CDR®) and Mini-Mental State Examination (MMSE). We show that ADNC, LBD, LATE-NC, CVD, hippocampal sclerosis, Pick disease, and FTLD-TDP significantly impact overall cognition as independent variables. More specifically, ADNC significantly affected all assessed cognitive domains, LBD affected attention, processing speed, and language, LATE-NC primarily affected tests related to logical memory and language, while CVD and other less common pathologies (including Pick disease, progressive supranuclear palsy, and corticobasal degeneration) had more variable neurocognitive effects. Additionally, ADNC, LBD, and higher numbers of comorbid neuropathologies were associated with the presence of at least one APOE ε4 allele, and ADNC and higher numbers of neuropathologies were inversely correlated with APOE ε2 alleles. Understanding the mechanisms by which individual and concomitant neuropathologies affect cognition and the degree to which each contributes is an imperative step in the development of biomarkers and disease-modifying therapeutics, particularly as these medical interventions become more targeted and personalized.


Assuntos
Doença de Alzheimer , Doenças Cardiovasculares , Demência , Demência Frontotemporal , Doença por Corpos de Lewy , Doença de Pick , Proteinopatias TDP-43 , Humanos , Doença de Pick/patologia , Encéfalo/patologia , Doença de Alzheimer/patologia , Doença por Corpos de Lewy/complicações , Doença por Corpos de Lewy/patologia , Demência Frontotemporal/patologia , Cognição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA